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Supplementary Text

Network Models

The backward assumption, which is based on the concept that gene expressions are

the consequences of upstream interactions between biological entities represented by

network nodes (such as enzymatic activities) requires a significant effort in mining

and organizing the knowledge to build “cause and effect” network models. The

results presented in this study represent a step forward in network integration and

have clearly shown the potential of TopoNPA to structure the gene expression

profiles into backbone differential scores in a relevant and robust manner. The

networks built to date are pioneering a novel approach to model cellular processes

at the molecular level by representing knowledge in a computable format using the

Biological Expression Language (BEL) syntax. The Open BEL framework is an

open source initiative [1] which aims to promote the BEL syntax as a standard to

capture biological knowledge.

The description of molecular processes in terms of network models introduces

several innovative features and opens new perspectives for describing biological

processes at system levels. First, as a consequence of the BEL semantics, the fun-

damental entities in the network models are not exclusively the concentrations of

the relevant molecules and their variations, but also include their functions and

their perturbations. The functional layer is the result of assembling multiple fun-

damental entities using literature-supported causal relationships, with the goal of

covering one specific cellular function, such as cell cycle, xenobiotic metabolism or

NFkB signaling. As a result, the integration of experimental data in the context of

such a network model naturally provides a “mechanistic” description, as the effects

of the experimental treatment contained in the data are described in terms of fun-

damental and causally connected functional entities underlying the cellular process

potentially associated with the observed phenotypes.

Second, the adoption of the backward-causal paradigm in our network models en-

ables the distinction between a “functional layer”, containing the actual biological

mechanisms, and a “gene transcript layer” representing the experimentally measur-

able consequences of the network when using transcriptomic technologies (Figure

1b). This architecture is characteristic of the combination of the network backbone

and backward-causal approaches, which constitute two essential features introduced



in this study. Previous works in molecular systems biology used these components

partially and separately when integrating prior knowledge into the analysis of tran-

scriptomic data. For instance, the use of protein-protein interaction (PPI) networks

in this context is pragmatically based on the “forward” approach (Figure 1a), even

though variations in transcript levels do not always translate into a similar variation

in protein abundances or activities. Also, PPI networks do not contain the mecha-

nistic aspect discussed above, as their nodes do not specifically represent functional

entities whose assembly describes cellular processes such as proliferation or stress.

Similarly, most existing backward-causal approaches do not introduce relationships

between their upstream entities, in opposition to the complex “functional layer”

of the network models used in this study. In most of the cases, a large collection

of potential upstream entities are tested independently of one another, and their

likelihood is scored individually by an enrichment statistic applied to differential

gene expression values [2–4]. A step forward is achieved by the Network Compo-

nent Analysis (NCA) where several upstream entities are allowed to compete with

one another to best model the cause of the observed gene expression values [5].

TopoNPA methodology goes even further by using all the structure contained in

the directed and signed networks of upstream entities constituting the “functional

layer”.

Another important feature of our biological network models is their clearly de-

fined boundaries, which are usually absent in PPI networks. Indeed, a direct phys-

ical/chemical interaction between two proteins, as captured in a PPI network, is

much less dependent on the tissue context than the functional activity of a protein,

which may strongly depend upon the presence of co-factors whose abundance can

vary across tissues. This highlights the fact that the relationships in the “functional

layer” have a specifically defined context as evidenced by the supporting litera-

ture. For example, the functional layers for the Xenobiotic and Cell Cycle models

were made specifically for healthy lung tissue, whereas the TNF-IL1a-TLR-NFκB

network model was made generically. These considerations clearly indicate that

the context-dependent, mechanistic and backward-causal biological network mod-

els used in this work constitute a powerful knowledge based substrate for integrating

transcriptomic data.

Defining the Biological Content of Network Models

The biological content of the network models is defined during their building phase,

which is multi-step iterative process involving human expert knowledge and data-

driven machine-assisted techniques. First, guided by a survey of relevant scientific

literature into the signaling pathways relevant to the process of interest (e.g., prolif-

eration, stress, or inflammation), a team of experts define the biological boundaries

of the network. Cause-and-effect relationships describing these pathways are ex-

tracted from the literature and the Selventa Knowledgebase which nucleates the

network with assertions derived from the relevant cell types and/or experimen-

tal contexts. Second, gene expression data obtained from experiments where the

process of interest has been stimulated are analyzed using Reverse Causal Reason-

ing (RCR, [4, 6]). RCR is a “backward-causal” approach that explicitly integrates

Selventa Knowledgebase, taking gene expression profiling data as an input and pro-

ducing qualitative statements for the activity states of biological entities according



to statistical and biological criteria as outputs [7–9]. Hypothesized upstream con-

trollers of the observed experimental data are drawn from those computations to

be included into the network.

In the final step of network construction, the content and connectivity is subject

to a terminal round of manual review. Ultimately, this three-step methodology

results in computationally optimized network models whose edges are supported by

published literature [10].

Data

CDK Inhibitor-Treated Normal Human Bronchial Epithelial Cells

NHBE cells were treated with the CDK4/6 inhibitor PD-0332991 (IC50 = 0.011

µmol/L for CDK4 and 0.016 µmol/L for CDK6). Specifically, cells were treated

in vitro with media alone or media with 1 µM CDK inhibitor, for 24 hours, after

which CDK inhibitor-treated cells were washed in media with or without the same

concentration of CDK inhibitor, while control cells were washed in media alone.

Cells were collected 2, 4, 6 and 8 hours after washing (3 petri-dishes per time

point), and total RNA was extracted and hybridized to Affymetrix U133 Plus 2.0

microarrays. Data is available in Array Express, accession number E-MTAB-1272.

Rat 28-Day cigarette smoke inhalation

Outbred Sprague-Dawley rats were obtained from Charles River, France. The age

of the rats at the start of the inhalation period was 7 weeks. The body weights were

within 20% of the mean weight for each sex. The rats were nose-only exposed to

main stream smoke (MS) or to filtered, conditioned air (sham exposure group) for 6

hours /day, 7 days/week for 28-days. Each group was exposed in a separate exposure

chamber. The 28-day exposure period is defined in draft OECD guideline 412 (2005).

The target MS concentrations were 8, 15, or 23 µg nicotine/l for the groups exposed

to the reference cigarette 3R4F. A 5-day dose-adaptation regimen was applied at

the start of the inhalation period. On study days 1 and 2, the rats were exposed to

1/3 of the target concentrations. On study days 3 and 4, the rats were exposed to

2/3 of the target smoke concentrations. As from day 5 on, the rats were exposed to

the target concentrations. 3R4F cigarettes were smoked according to Health Canada

Intensive Smoking Protocol (Health Canada, 1999) whereby MS was diluted with

filtered, conditioned air to the target nicotine concentrations. Steady-state blood

carboxyhemoglobin concentration, respiratory physiology parameters and represen-

tative nicotine metabolites in the urine were determined (data not shown). Food

consumption and body weight, and hematological, clinical-chemical, gross patholog-

ical, histopathological, and pulmonary inflammation parameters were determined

to characterize the biological activity of the smoke. The study was conducted in

compliance with the OECD Principles on Good Laboratory Practices (as revised in

1997).

TNF exposure of RLAK cell

NRBE cells (normal rat bronchial epithelial cells) were either treated with a vehicle

control (sham) or TNFα at concentrations of 0.1 (very low), 1 (low), 10 (medium),

or 100 (high) ng/ml. Normal rat bronchial epithelial cells (Lonza Walkersville, Inc.)



were cultured in standard growth medium (Clonetics medium, Lonza Walkersville,

Inc.). Cells were harvested after the desired treatment length (30 minutes, 2 hours,

or 24 hours). Cells were immediately put on ice. Each experimental group contains

5 biological replicates. Data are available in Array Express, accession number E-

MTAB-1311.

Gene expression profiling and analysis

Tissue Preparation

Dissection took take place directly after the last exposure. Left and right lungs were

separately snap-frozen immediately after the preparation. To collect specific cellu-

lar structures of the lung (i.e., parenchyma and airways), Laser Capture Microdis-

section (LCM) was performed (PALM Microbeam, Carl Zeiss Microscopy GmbH,

Jena). To this end, 20 µm slices were produced and mounted on special membrane

slides (Zeiss, “MembraneSlide”, 1.0 PEN’). For collecting the parenchyma mate-

rial, only slices which were enriched for parenchyma (mainly at the exterior side of

the lung) were used. As airway-conducting material, the main-bronchus, and the

first main branching were taken. Only slices which were enriched for air-conducting

structures (from the central part of the lung) were taken. The areas of interest

(parenchyma, main bronchus) were exercised by laser micro-dissection and trans-

ferred into an RNAse-free reaction tube. Because the lasered areas were too large

for the catapulting function of the microscope, the slices needed to be transferred

with RNAse-free forceps (irradiated with UV light). Directly after the transfer, the

tissue was lysed in 700 µl QIAzol lysis buffer (Qiagen). The samples were frozen on

dry ice and stored at -80 degC until further processing.

RNA Preparation and Whole Genome Expression Arrays

RNA from the derived samples was isolated using miRNAeasy Mini Kit (Qiagen).

The resulting RNA quality and quantity were analyzed using an Agilent 2100 Bio-

Analyzer (Agilent, Waldbronn) and a NanoDrop ND-1000 (PeqLab, Erlangen). The

starting material for the use of the GeneChip R©3’ IVT Express Kit (Affymetrix) was

100 ng RNA in 3 µl RNAase-free water. The procedure was carried out as described

in the GeneChip R©3’ IVT Express Kit User Manual from Affymetrix. The Hybridiza-

tion mix was incubated on GeneChip R©Rat Genome 230 2.0 Arrays for 16 hours.

Further processing was performed as described in the GeneChip R©Expression Analy-

sis Technical Manual with Specific Protocols for using the GeneChip Hybridization,

Wash and Stain Kit Affymetrix. After hybridization, the arrays were inserted in the

GeneChip R©Fluidics Station 450 of Affymetrix which was operated as described in

the GeneChip R©Fluidics Station User’s Guide. The Fluidics Station was controlled

by the GeneChip Command Console software. The probe array underwent an auto-

mated washing and staining protocol specific for GeneChip R©Rat Genome 230 2.0

Arrays. The arrays were further analyzed in the Affymetrix R©Expression Console

software application using the MAS5 algorithm to create CHP files and checked

for several quality parameters provided in the Affymetrix data analysis software

package. Command Console Software (Affymetrix) was used to automatically grid

the DAT files and create the CEL files (probe cell intensity data). Data processing

was implemented in the R statistical environment. Raw RNA expression data were



analyzed using the affy and gcrma packages of the Bioconductor suite of microarray

analysis tools available in the R statistical environment. Robust Microarray Analy-

sis (RMA) background correction and quantile normalization were used to generate

probe set expression values.
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Supplementary Figures
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Figure S1 Forward FCS approach results using the 28 Day Inhalation study and the TNF-induced
response in RLAK cells study, using both TNF-IL1α-TLR-NFκB and the xenobiotic metabolism
response networks. Several combinations of gene level statistics and geneset enrichment statistics
are compared. Among those, the combination “fc / maxmean” is the method leading to the best
qualitative and quantitative results, but still predicting some activation of the xenobiotic response
metabolism for the TNFα-induced treatment in RLAK cells (bottom right panel). Our method is
the only one exhibiting the expected qualitative and quantitative pattern. A “*” indicates a
significant enrichment (P-value¡0.05). ES is teh enrichemnt score of each methods normalized to
its maximum value. See main text, method section for further details.
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Figure S2 Backward FCS/ORA approach: each node in the functional layer having connections to
the transcript layer is scored either by classical FCS approaches based several combination of gene
level and geneset enrichment statistics, or RCR. A binomial ORA test is then performed to assess
the enrichment of the two-layer network. A quantitative score is derived as the sum of square (SS)
of the enrichment statistics of each nodes scored. For RCR −log10(p− value) is used. While again
the combination “fc / maxmean” leads to the best results, it fails at identifying the perturbation
of the Xenobiotic network at low and medium doses. A “*” indicates a significant enrichment
(P-value< 0.05). SS(ES) denotes the sum of square enrichment scores (normalized to its
maximum value for each method). Further details are described in the main text, method section.
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Figure S3 Forward FCS approach results using the CDK-inhibitor study, using the cell cycle
networks. Several combination of gene level statistics and geneset enrichment statistics are
compared. Among those, the combination fc / maxmean is the method leading to the best
qualitative and quantitative results. A “*” indicates a significant enrichment (P-value< 0.05). ES
is teh enrichemnt score of each methods normalized to its maximum value. See main text, method
section for further details.
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Figure S4 Backward FCS/ORA approach: each node in the functional layer having connections to
the transcript layer is scored either by classical FCS approaches based several combinations of
gene level and geneset enrichment statistics, or RCR. A binomial ORA test is then performed to
assess the enrichment of the two-layer network. A quantitative score is derived as the sum of
square (SS) of the enrichment statistics of each nodes scored. For RCR −log10(p − value) is
used. While again the combination “fc / maxmean” leads to the best results, while the score for
2h INH+GM is negative. A “*” indicates a significant enrichment (P-value< 0.05). SS(ES)
denotes the sum of square enrichment scores (normalized to its maximum value for each method).
Details can be found in the main text, method section.
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Figure S5 NPA (Martin et al. 2012) results using the 28 Day Inhalation study and the
TNF-induced response in RLAK cells study, using both TNF-IL1α-TLR-NFκB. The method is not
applicable to the xenobiotic network as this model is not causally consistent. The qualitative
pattern of the NPA method, when applicable, is matching with the expectations. While behaving
quantitatively for the RLAK study, it fails to quantify the dose response in the 28-day rat
inhalation study. Again, TopoNPA method is one exhibiting both the expected qualitative and
quantitative pattern. A “*” indicates a significant enrichment (P-value< 0.05).
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Figure S6 Principal Component Analysis (PCA) of the backbone values of the xenobiotic
metabolism response network . Panel c) shows the alignment of the phenotype with the first
component as opposed to the PCA using all gene expression data (panel a)), or only gene
expression data from the genes underlying the network (panel b)).

Figure S7 Network leading nodes of TNF-IL1α-TLR-NFκB network for the comparison of IFX
responders vs. IFX non-responders, before (left bar) and after (right bar) treatment. Values are -1
(respectively +1) if the node is a leading node and its differential backbone value is negative
(respectively positive), or 0 if it is not a leading node. Nodes circled in green are the leading nodes
of the perturbation of the network from the comparison shown in Figure 6 of the main text.
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Figure S8 Principal Component Analysis (PCA) of the backbone values of the
TNF-IL1α-TLR-NFκB network . Panel c) shows the alignment of the phenotype with the first
component as opposed to the PCA using all gene expression data (panel a)), or only gene
expression data from the genes underlying the network (panel b)). The first cohort (A) of IFX
responders (respectively IFX non-responders) are displayed in brown (respectively green) and the
second cohort (B) of IFX responders (respectively IFX non-responders) are displayed in orange
(respectively blue).
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b)                   FACS analysis: Control and Inhibitor
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Figure S9 Results of the Fluorescence Activated Cell Sorting (FACS) analysis showing the re-entry
in S-phase after removal of the inhibitor (panel a)). Control and inhibited cell sorting results are
shown in panel b). The percentage of cell re-entering in S-phase is increasing with time.



Supplementary Tables

Table S1 Prediction sensitivities and specificities for the two datasets, shown with standard errors for cross-validation results, GSE7895 (D1), GSE19667 (D2). The predictions of the
samples from the dataset Dj based on the model trained on the dataset Di are reported in the columns Di → Dj . While not systematically having the best cross-validaiton
performance, the predictors based on the backbone values show are more robust behavior when predicting one dataset based on the model trained on the other one. The mean of the
G-performances (=

√
Sp · Se) over the two independant test sets are shown in the rightmost column and is highlighted if > 0.7. The best UBE based models is chosen based on the

mean cross-validation G-performance for the two datasets. The algorithms based on the backbone values leads systematically to good performances.

Type Method
CV (D1/D2) D1 → D2 D2 → D1 Mean G-perf

Se Sp Se Sp Se Sp Test sets

All Genes

tForwardLd 0.95 ± 0.06 / 0.86 ± 0.05 0.93 ± 0.04 / 0.92 ± 0.03 1.00 0.87 0.69 1.00 0.88

NSC 0.92 ± 0.07 / 0.94 ± 0.04 0.96 ± 0.03 / 0.93 ± 0.03 1.00 0.00 0.98 0.00 0.00
RF 0.75 ± 0.11 / 0.96 ± 0.04 1.00 ± 0.01 / 0.97 ± 0.02 1.00 0.31 0.98 0.95 0.76

SVM 0.84 ± 0.10 / 0.94 ± 0.05 0.98 ± 0.02 / 0.96 ± 0.02 1.00 0.00 1.00 0.00 0.00

Gene in
transcript layer

tForwardLd 0.95 ± 0.06 / 0.89 ± 0.04 0.92 ± 0.04 / 0.93 ± 0.03 0.97 0.91 0.61 0.85 0.83

LDA 0.92 ± 0.05 / 0.94 ± 0.03 0.80 ± 0.10 / 0.97 ± 0.03 0.62 0.27 0.86 0.40 0.50
NSC 0.96 ± 0.03 / 0.92 ± 0.03 0.93 ± 0.05 / 0.95 ± 0.04 1.00 0.00 1.00 0.00 0.00
RF 0.87 ± 0.09 / 0.96 ± 0.04 1.00 ± 0.00 / 0.97 ± 0.02 0.98 0.58 0.94 1.00 0.86

SVM 0.88 ± 0.07 / 0.95 ± 0.04 0.98 ± 0.02 / 0.95 ± 0.02 1.00 0.00 0.78 0.15 0.17

UBE down-
stream
genes

CORG + LDA 0.97 ± 0.03 / 0.94 ± 0.03 0.90 ± 0.07 / 0.94 ± 0.04 0.83 0.36 0.61 0.55 0.56
CORG + NSC 0.98 ± 0.02 / 0.95 ± 0.03 0.93 ± 0.05 / 0.96 ± 0.04 0.97 0.00 0.67 0.30 0.22
Best LDA (8-Methyl-IQX) 0.96 ± 0.03 / 0.95 ± 0.03 0.88 ± 0.07 / 0.96 ± 0.03 0.9 0.80 0.80 1.00 0.89

Best NSC (8-Methyl-IQX) 0.96 ± 0.02 / 0.86 ± 0.03 0.92 ± 0.03 / 0.98 ± 0.02 0.98 0.76 0.86 1.00 0.90

Backbone values

tForwardLd 0.97 ± 0.04 / 0.90 ± 0.04 0.95 ± 0.06 / 0.97 ± 0.02 0.8 0.82 0.84 0.90 0.86

LDA 0.96 ± 0.03 / 0.92 ± 0.03 0.94 ± 0.06 / 0.98 ± 0.02 0.89 0.80 0.84 0.90 0.86

NSC 0.93 ± 0.03 / 0.93 ± 0.03 0.81 ± 0.10 / 0.92 ± 0.04 0.95 0.87 0.94 0.90 0.91

RF 0.93 ± 0.03 / 0.91 ± 0.03 0.80 ± 0.10 / 0.91 ± 0.05 0.97 0.73 0.88 0.85 0.85

SVM 0.93 ± 0.04 / 0.93 ± 0.03 0.88 ± 0.07 / 0.91 ± 0.05 0.98 0.62 0.88 0.90 0.83



Table S2 Prediction sensitivities and specificities, shown with standard errors for cross-validation results, for the two cohorts,A and B. The predictions of the samples from the cohort A
(B respectively) based on the model trained on the cohorts B (A respectively) are reported in the columns A → B (B → A respectively). The mean of the G-performances
(=

√
Sp · Se) over the two independant test sets are shown in the rightmost column and is highlighted if > 0.7. The best UBE based models is chosen based on the mean

cross-validation G-performance for the two datasets. The algorithms based on the backbone values leads to good performances for a majority of algorithms.

Type Method
CV (A/B) A → B B → A Mean G-perf

Se Sp Se Sp Se Sp Test sets

All Genes

tForwardLd 0.38 ± 0.15 / 0.63 ± 0.14 0.80 ± 0.11 / 0.65 ± 0.15 0.50 0.82 1.00 0.88 0.79

From Arijs, 2009 accuracy: 0.92/0.91 0.25 1 accuracy: 0.71 na
RF 0.20 ± 0.15 / 0.82 ± 0.13 0.88 ± 0.09 / 0.73 ± 0.14 0.25 0.91 0.62 0.75 0.58
SVM 0.52 ± 0.16 / 0.78 ± 0.13 0.85 ± 0.10 / 0.69 ± 0.14 0.42 0.82 0.62 0.75 0.63
NSC 0.48 ± 0.16 / 0.78 ± 0.12 0.80 ± 0.11 / 0.58 ± 0.16 0.67 1.00 0.69 0.88 0.80

Gene in
transcript layer

tForwardLd 0.50 ± 0.15 / 0.68 ± 0.14 0.83 ± 0.10 / 0.62 ± 0.15 0.67 1.00 0.88 0.69 0.80

LDA 0.43 ± 0.16 / 0.90 ± 0.09 0.84 ± 0.10 / 0.65 ± 0.15 0.42 0.82 0.88 0.62 0.66
NSC 0.60 ± 0.16 / 0.88 ± 0.10 0.79 ± 0.11 / 0.58 ± 0.16 0.75 0.73 0.88 0.56 0.72

RF 0.28 ± 0.16 / 0.85 ± 0.11 0.88 ± 0.09 / 0.71 ± 0.14 0.33 0.82 0.88 0.69 0.65
SVM 0.52 ± 0.17 / 0.77 ± 0.13 0.86 ± 0.11/ 0.69 ± 0.13 0.42 0.82 0.88 0.69 0.68

UBE down-
stream
genes

CORG + LDA 0.33 ± 0.15 / 0.73 ± 0.13 0.68 ± 0.12 / 0.62 ± 0.16 0.25 0.64 0.75 0.69 0.56
CORG + NSC 0.62 ± 0.15 / 0.90 ± 0.09 0.78 ± 0.11 / 0.60 ± 0.16 0.50 0.82 0.88 0.69 0.71

Best LDA (MAP3K1) 0.45 ± 0.14 / 0.98 ± 0.05 0.78 ± 0.11 / 0.69 ± 0.15 0.58 0.91 1.00 0.75 0.80

Best NSC (catof(TLR2)) 0.85 ± 0.12 / 0.92 ± 0.02 0.80 ± 0.11 / 0.56 ± 0.15 0.75 1.00 1.00 0.69 0.85

Backbone values

tForwardLd 0.53 ± 0.14 / 0.82 ± 0.13 0.75 ± 0.12 / 0.75 ± 0.13 0.50 0.64 1.00 0.62 0.68
LDA 0.75 ± 0.11 / 0.75 ± 0.13 0.76 ± 0.14 / 0.75 ± 0.11 0.50 0.73 0.88 0.56 0.65
NSC 0.98 ± 0.05 / 0.98 ± 0.02 0.75 ± 0.12 / 0.67 ± 0.15 0.92 0.82 1.00 0.62 0.83

SVM 0.78 ± 0.11 / 0.78 ± 0.13 0.40 ± 0.17 / 0.77 ± 0.13 0.91 0.50 0.69 0.88 0.73

RF 0.75 ± 0.12 / 0.82 ± 0.11 0.62 ± 0.15 / 0.78 ± 0.13 0.82 0.75 0.75 0.88 0.80


